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Abstract 
 

A strategy to identify and select the most relevant variables to study problems in the exact sciences, when large databases of data have to be explored, is 

formulated. It consists of a first exploratory stage, performed mainly with the Classification and Regression Tree method, to determine the list of most relevant 

signals to be used in the analysis of the phenomenon of interest. A linear followed by a non linear correlation technique (Principal Component Analysis and 

Auto-associative Neural Networks respectively) are then applied to reduce the number of signals to the ones containing non redundant information. The 

potential of the approach is illustrated by an application to the problem of identifying the confinement regime in the Joint European Torus. The minimum set 

of signals has been used to train a neural network and its performance is compared with various theoretical models. The success rate of the neural network is 

very high and it generally further outperforms the available theoretical models. 

 

1 Introduction   
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The plasmas produced in Magnetic Confinement Fusion are very complex, open systems. They are kept out of equilibrium by injection of material and energy 

in order to sustain configurations capable of maximising the fusion rate. To study and control these plasmas, an increased number of diagnostics take many 

measurements of all the most important physical parameters.  In the largest devices these diagnostics can produce very large amounts of information. In JET, 

for example, up to 18 Gbytes of data, which is the equivalent of a 2 hour digital movie in terms of information content, can be generated per shot. JET entire 

database now exceeds 90 Tbytes and the projections indicate that the volume of data will be orders of magnitude larger in the next generation of devices. It is 

therefore increasingly difficult to analyse all this information manually or with traditional methods.  

 

All the aforementioned issues motivate the development of new exploratory and data analysis methods to be able to process automatically large amounts of 

information and derive the required knowledge from the information stored in the databases. On the other hand, the methods developed to help in this respect 

have been originally conceived for the private sector, to understand the market and costumer behaviour. Therefore these techniques are more suited to provide 

qualitative confirmation or in any case they are not explicitly designed to provide answers in the form more suited to quantitative investigation. As a 

consequence significant developments are often necessary for the effective application of these methods to the exact sciences. One particularly relevant issue 

is the determination of the minimum number of variables which is required to study a certain physical phenomenon. This variable selection is of the highest 

importance or an efficient theory formulation and model selection process.  

 

In this paper, various exploratory techniques have been revisited, combined and applied to the problem of identifying the confinement regime in Tokamaks. 

The plasmas produced in these devices can indeed be in different states of confinement, among which the most important are the so called L and H mode [1]. 

The transition between the two is a quite rapid phenomenon similar in many respects to a phase transition. Therefore, both to understand the physics of the 

phenomenon and to control the plasma performance, it is very important to assess the threshold to access the H mode ( see section2). On the other hand, the 

threshold to access the H mode remains one of the most important physical aspects of the Tokamak configuration, which has not been fully understood yet. 

Even after more than twenty five years after its discovery and even if the H mode can be achieved routinely in many devices, the exact physical mechanisms 

leading to the transition remain unidentified and this can have significant implications, particularly for the 

scaling of the power threshold to larger devices like ITER [2]. An example of a typical JET discharge with an 

L to H and an H to L transition is shown in figure 1.  

 

The main objective of the present analysis consists of determining the most relevant and independent signals 

among the thousands routinely acquired at JET to study this subject. To this end, after a pre-selection 

performed by the experts, a general database is traversed using Classification And Regression Tree [3] 

(CART) algorithms (see section 3). The CART approach identifies the most relevant signals and their relative 

importance but it does not provide clear information about the level of correlation among these variables. 

Therefore a Principal Component Analysis (PCA) [4] is applied first to cluster the signals, determine the level 

of linear correlation between them and eliminate the redundant ones (see section 4). In order to extract also the 

nonlinear component of the correlation, the approach of Auto-associative Neural Networks (ANNs) [5] has 

Figure 1. 

Time evolution of various signals for a JET 

discharge with an L and H mode phase. The 

L to H  transition is at 58s, the H to L 

transition is at 65s as indicated by the last 

variable “Mode”, which assumes value one 

when the plasma is in the H mode. 
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been adopted, which allows determining the dimensionality of the minimum space required to properly model the phenomenon. To also identify the identity of 

the actual variables, a couple of independent methods have been devised which provide consistent results (see section 4). In order to assess the validity of the 

approach, a specific NN has been trained using only the inputs identified by the previously described steps. The performance of the network has been 

compared with the predictive capability of some theoretical models, confirming the choice of the signals (section 5). Further developments of the approach are 

briefly described in the last section.  

 

 

 

 

2 Different confinement regimes in reactor relevant plasmas: theoretical models and 
empirical studies 

In the ASDEX device it was discovered in 1982 that, increasing sufficiently the input power, 

the plasmas tended to transit spontaneously to an enhanced confinement mode called the High 

confinement or H-mode [1]. The H-mode is characterized by the presence of a thin region of 

very low transport situated at the edge of the plasma. Steep gradients in the density and 

temperature profiles are observed across this region. This low transport region at the edge of 

the H-mode plasma is known as an Edge Transport Barrier (ETB). L-H transitions are 

experimentally observed to occur only when the heating power applied to the plasma exceeds a 

critical value, which has become known as the L-H power threshold (Pth). The H-mode is 

typically reached transiting first through a low confinement regime the so called L-mode. Once 

the correct L-mode conditions are met, the transition from L to H mode occurs with the 

spontaneous formation of an ETB. When the ETB is starting to develop, the confinement at the 

edge of the plasma improves, which consequentially sustains the further growth of the H-mode 

pedestal. With regards to the time scales, the formation of an ETB occurs in matter of 

milliseconds, as can be seen by its effects on particle transport.  

Due to the importance of achieving the H-mode on the next step device, ITER, a lot of 

experimental time has been devoted to identifying the scaling laws expressions, which govern 

the access to it. A series of theoretical models exists, which try to interpret the onset of an ETB 

as the interplay between plasma instabilities and various stabilising factors. These models 

consider a wide range of different physical phenomena and provide some testable criteria for 

the onset of the H-mode in terms of measurable plasma parameters. These criteria are 

expressed in terms of a critical electron temperature Tec, which is considered to be the relevant 
 

Figure2.Pressure profiles typical of the various 

confinement regimes in a Tokamak plasma. The 

parameter a is the minor radius of the device 

. 



 

control parameter, to use a language typical of phase transitions and auto

express the temperature threshold to enter the H mode in terms of general plasma parameters 

[6]. The theoretical scaling laws for the access to the H mode of confinement are typically expressed in a monomial form of the type:

q

n

ba

ec pppkT ......21∝                  

where Tec is the temperature threshold and pi are the various variables. 

believed to affect the plasma before the transition to the H mode, and some stabilising phenomena taking over when the right 

important models, which use commonly measured quantities and are therefore susceptible of a general statistical validation wi

described in the following. 

The model developed in [7,8] assumes that the drift wave turbulence is the main transport mechanism in the L mode and the resistive skin effects are 

considered the main stabilising factor. In [9] a model based on drift wave instabilities has been particularised for two different assumptions about the transpo

(convective or conductive) in the Scrape Off Layer (SOL). Two different equations are therefore 

and one for conductive transport in the SOL. In the model described in [10

 

3 Data Base, Correlation, and Regression Tree

Table I: The expression of the temperature threshold to access the H mode of confinement as 

provided by theoretical models using only widely available plasma quantities. 

temperature, ne the electron density, B the toroidal field, q the safety facto, R the major radius, a the 

minor radius, A the plasma atomic  mass and � the ratio of the ion and electron temperature.

Chankin [7,8] 

Kernel et al. (Collisional) [9] 

Kernel et al.    [9] 

(Non Collisional) 

Rogister et al.  [10] 

to use a language typical of phase transitions and auto-organisation studies. The most widely accepted theoretical models available, which 

express the temperature threshold to enter the H mode in terms of general plasma parameters measured in a wide range of machines, are summarise in table I

scaling laws for the access to the H mode of confinement are typically expressed in a monomial form of the type: 

                 (2) 

are the various variables. These scaling laws are the results of the interplay between the main instabilities, 

believed to affect the plasma before the transition to the H mode, and some stabilising phenomena taking over when the right conditions are

important models, which use commonly measured quantities and are therefore susceptible of a general statistical validation with data mining tools, are briefly 

ave turbulence is the main transport mechanism in the L mode and the resistive skin effects are 

] a model based on drift wave instabilities has been particularised for two different assumptions about the transpo

Off Layer (SOL). Two different equations are therefore obtained for the temperature threshold, one for convective 

. In the model described in [10] also effects of the neutral particles in the core are taken into account. 

and Regression Trees 
As it is typical of all the appli

learning methods, a crucial preliminary step consists 

of making sure that a validate database is ava

the techniques to be properly trained. 

set of about 50 discharges has been carefully analysed 

by the experts, who have provided the best possible 

estimates of the transition times from the L 

mode of confinement. The avail

the shot range between 55211 (21/03/2002)

(28/01/2004) and they therefore refer mainly to JET 

divertor configuration with the Septum. This general 

database, whose main characteristi

detail in [11], has been divided in two sets

training and one for the final test of the methods.

composition of these two sets has been changed 

randomly to achieved a sounder statistical basis with 

The expression of the temperature threshold to access the H mode of confinement as 

ly widely available plasma quantities. Te is the electron 

the electron density, B the toroidal field, q the safety facto, R the major radius, a the 

the ratio of the ion and electron temperature. 
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The most widely accepted theoretical models available, which 

of machines, are summarise in table I 

These scaling laws are the results of the interplay between the main instabilities, 

conditions are met. The most 

th data mining tools, are briefly 

ave turbulence is the main transport mechanism in the L mode and the resistive skin effects are 

] a model based on drift wave instabilities has been particularised for two different assumptions about the transport 

for the temperature threshold, one for convective 

utral particles in the core are taken into account.  

applications of automatic 

learning methods, a crucial preliminary step consists 

of making sure that a validate database is available for 

rly trained. To this end, a 

set of about 50 discharges has been carefully analysed 

who have provided the best possible 

ates of the transition times from the L to the H 

The available discharges cover 

55211 (21/03/2002) and 62723 

and they therefore refer mainly to JET 

divertor configuration with the Septum. This general 

, whose main characteristics are described in 

n divided in two sets, one for the 

for the final test of the methods. The 

composition of these two sets has been changed 

randomly to achieved a sounder statistical basis with 
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the number of shots available. The time slices analysed in the rest of the paper belong to the interval between plus and minus 300 ms around the time of the L 

to H transition. 

 

Table II  

The most relevant variables for the study of the L to H transition as provided by the CART method. 

 

Short name Description 

Bndiam Beta normalised with respect to the diamagnetic energy 

LID4 Outer interferometry channel 

Wmhd Magnetohydrodynamic energy 

Te Electron temperature at the intersection between interferometry vertical view and magnetic surface (ψ = 0.8) 

RXPL X point horizontal coordinate 

ZXPL X point vertical coordinate 

Q80 Safety factor on magnetic surface (ψ = 0.8) 

Bt80 Axial toroidal Magnetic Field at a magnetic surface (ψ = 0.8) 

 

For the discharges in this specific database, thousands of 

signals have been acquired. In order to reduce the 

dimensionality of the problem, the first step has been the 

selection of a subset of signals (about 40), which the 

experts consider as possibly linked to the confinement 

regime transition, given the basic understanding of the 

physics involved [12????  Guido]. In this indeed well 

known [13] that including an excessive number of variables 

in the exploratory phase can result in the algorithms 

detecting a high number of spurious correlations, which can 

be due to casual fluctuations in the data and are not relevant 

to the phenomenon under study. To assess the relative 

importance of the signals in this reduced dataset, consisting 

of the measurements and the information for every time 

slice whether the plasma is the L or H mode, the CART 
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method has been applied first. The CART algorithm is a supervised approach, which traverses the entire database and tries to find which variable and which 

value allows best dividing the time slices in two groups, one including the H mode phases and one the L mode phases of confinement. Since for the problem 

under study no signal can completely separate the two classes, after the variable with the highest exploratory value has been determined, the process is 

repeated for the resulting subclasses until a full discrimination has been obtained. The output of 

the technique is a tree in which, by construction, the most relevant signals are located toward the 

root. The importance of the method resides in its non linear and unbiased character. Indeed the 

algorithm explores the entire database in its pristine form and not even renormalization of the data 

is required.  

Even if the CART method is very powerful, it is not completely satisfactory for the present 

application. Indeed, it is well known that the nonlinear, sequential approach to the building of the 

tree typically produces results which are sensitive to the details of the input database. Therefore 

running the algorithm on different versions of the database can produce significantly different 

hierarchies of important signals. Therefore the most conservative use of the technique consists of 

applying the method to different versions of the input database and then selecting all the signals 

that in any of the runs the CART identifies as important.  This is the approach followed and the 

resulting more important variables are βn, Wmhd, Te, LiD4, Bt80, Q80, RXPL, ZXPL as 

summarised in table II. 

 

Another important aspect of the previous analysis, which must be taken into consideration, is the 

fact that the CART output just identifies the most relevant signals for the problem at hand but it 

does not provide any information about the interdependence of these quantities. This redundancy 

of the variables identified by CART has been therefore analysed with the PCA approach. To this 

end, the signals identified with CART have been divided into two main groups: the first one 

includes the quantities which change significantly during the same shot and are therefore called 

dynamic (βn, Wmhd, Te, LiD4), the second comprises the parameters which are almost constant 

during a discharge and are therefore identified as static (Bt80, Q80, RXPL, ZXPL). This 

distinction, which is probably of quite general value but is certainly valid for the database 

considered in this paper, allows a significant optimisation of the PCA analysis in terms of 

computational efforts.  The degree of linear correlation within these two groups of variables is 

reported in figure 3 and 4. Bin charts represent the principal components and their cumulative 

energy is defined as the percentage of total variance in the data which is accounted for. It is 

calculated by summing percentage of total variance taken into account by each component. 

Among both the static and dynamic signals, we have selected the three first components which 
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represent more than 90% of variance in the original data, as shown in figure three. Then each variable has been plotted in the subspace created by the principal 

components. For each principal component then only the most relevant variable has been retained. On the basis of the results of the PCA analysis we are able 

to cluster signals into five groups and so to have the possibility to select a subset (one in each group) of independent signals without degrading the quality of 

the prediction. The following signals have thus been identified: Wmhd, Te, Bt80, Q80, ZXPL. 

The correlation determined by the PCA method allows reducing significantly the number of 

relevant signals. On the other hand the PCA is a linear technique and therefore it extracts only the 

linear correlation between the variables. To quantify the remaining degree of non linear 

correlation, the architecture of ANNs [5] has been adopted. These networks have the structure 

described in figure 5 and they are used to match inputs on themselves. By reducing progressively 

the number of neurons in the central layer and monitoring the identity mapping of the network, it 

is possible to determine the dimensionality of the problem under study. Indeed, when removing an 

additional neuron in the central layer causes a significant increase in the errors, the degradation in 

performance indicates that all the neurons are essential to properly model the phenomenon. 

Applying this approach to the five signals Wmhd, Te, Bt80, Q80, ZXPL indicates very clearly that 

the minimum number of neurons in the intermediate layer is three. 

 

  

At this point, identified the dimensionality of the problem, a strategy is required to finally select 

the subset of really indispensable variables. A logical approach consists of calculating the total of 

the weights connecting each input to the three neurons in the bottleneck layer. Such technique 

allows determining both the correlations between variables and their importance in the L-H 

transition. Indeed, as reported in table II, the five variables Wmhd, Te, Bt80, Q80, ZXPL can be clearly grouped into three different clusters, (Wmhd/Te), 

(Q80/Bt80) and ZXPL, depending of the strength of the weights connecting them to the bottleneck layer.  

 

Table III 

 Relative importance of each variable as derived from the sum of the weights connecting each input to the bottleneck layer. The column Neuron 

indicates the three neurons of the bottleneck layer and so the intrinsic dimension. 

 

Coefficients NLPCA 

Neuron Wmhd Te Q80 ZXPL Bt80 

A 1 0,85 0,4 0,15 0,45 

B 1 0,85 0,35 0,15 0,45 
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C 1 1 0,4 0,2 0,55 

 

To test the validity of this original approach of summing the weights from the inputs to the neurons in the bottleneck, a brute force method has been 

followed. First, four neural networks have been trained on the database: one using all the signals and three eliminating in turn one of the clusters. This set of 

networks allows checking the degradation in the prediction accuracy for each of the clusters. From the results reported in table IV, it appears very clearly that 

the relative importance of the three clusters identified with the sum of the weights is fully confirmed. We can also note that the best result in terms of 

performance for regime identification is obtained with the full set of the five variables, confirming at the same time the validity of the technique to identify the 

most relevant signals. 

 

 

Table IV 

Brute force technique to confirm the relative importance of the three clusters of variables identified with the sum of the weights. The X indicates the inputs 

omitted. 

 

Variables 

Wmhd Te Q80 Bt80 ZXPL Error 
Number of 

variables 

5 1 1 1 1 1 2,2% 

3 X X 1 1 1 35,4% 

3 1 1 X X 1 8,2% 

4 1 1 1 1 X 4,6% 

 

 

Then, six neural networks have been trained on the database: one with all the five signals (Wmhd, Te, Bt80, Q80, ZXPL) and four without one of the 

inputs each. This set of networks allows checking the importance of variables in the same cluster and the results are reported in table V.  

 

Table V  

Brute force technique using neural network prediction to check the relative importance of each variable in the same cluster 



 9

 

Wmhd Te Q80 Bt80 ZXPL Error 

1 1 1 1 1 2,2% 

X 1 1 1 1 4,8% 

1 X 1 1 1 11,2% 

1 1 X 1 1 5,3% 

1 1 1 X 1 6,7% 

 

It is worth mentioning that the NN used to provide the results reported in table IV and V are all traditional multilayer perceptrons, trained with the back 

propagation method.  

 

The selection of the five most important signals being confirmed, the next step consists of determining the minimum number of inputs, which are still 

sufficient to characterise the L to H transition, without an excessive degradation in performance. The motivation resides in the need to reduce the number of 

variables to three, in order to compare the classification capability of neural networks, using these three quantities, with the most widely accepted theoretical 

models, which the typically  utilise four quantities (see section 5). 

 

At this point, two possible alternatives can be considered for the choice of the most relevant variables. One would consist of eliminating the two signals with 

the lowest sum of the weights connecting them to the three neurons in the bottleneck layer. On the other hand, given the strong correlation between the 

quantities in the first two clusters, it is not evident that the alternative choice of selecting one signal per cluster should be discarded a priori. To identify the 

most appropriate alternative, two different NNs have been trained. One NN uses one signal in each cluster and the second uses only the three variables with 

the highest weights from the first two clusters.  Table VI summarizes choice of the two different subsets of more relevant variables and the corresponding 

error rates. 

 

Table VI  

The performance of the ANNs using the two alternatives of selecting the there most relevant variables for the analysis of the L-H transition 

 

Wmhd Te Q80 Bt80 ZXPL Error 

X 1 X 1 1 5,7% 

1 1 X 1 X 5,2% 



 

 

This exhaustive test has confirms the results of the previous method. 

the described process of variable reduction is represented graphically 

 

 

5 Classification capabilities of the identified variables and comparison
models 

Figure 6 

The main steps of the proposed exploratory methodology to extra

the most relevant signals from the database. Table VII:  Failure rate of the theoretical models

 

Model Chankin [7,8] 
Kernel et al. 

(Collisional) [9] 

Kernel et al. 

Collisional

Failure rate  19,0% 27,6% 

 

s method. The variables surviving this selection are finally Te, Wmhd and 

represented graphically in figure 6. 

of the identified variables and comparison with theoretical 

To summarise the results of the previous sections, with the 

variables identified, a traditional multiplayer perceptron can discriminate the L from

H mode of confinement in our database with a success rate of 

row of VI). This performance is very high and in a certain sense testifies

the quality of the selection process developed. In any case, t

high information content of the variables identified with the d

performance of the network has been compared with the classification capability of 

the theoretical models presented in section 2. The failure rates 

the database used in this paper are shown in table VII. 

 

 

The analytic expressions for the scaling of the electron temperature, which these 

models provide, depend on similar variables but not exactly the same 

selected by the method proposed in this paper. The significantly higher success rate 

of the NNs, trained with the variables 

approach, supports the validity of the proposed method

seems also to indicate that these theoretical models do not 

use the most significant quantities. 

order to dissipate possible doubts 

performance between the theoretical models and the NN

really due to the choice of the input signals, 

been trained with the same inputs as the theoretical model 

with the best success rate. The failure rate

reported in table V and is similar to the one of the theoretical 

model. This indicates that the improvement in performance 

The main steps of the proposed exploratory methodology to extract 

rate of the theoretical models.  

Kernel et al. 

(Non 

Collisional) 

[9] 

Rogister et al. 

[10] 

18,0% 50,0% 

10

Wmhd and Bt80. For clarity sake, 

with theoretical 

ith the three most relevant 

traditional multiplayer perceptron can discriminate the L from 

in our database with a success rate of about five percent (last 

d in a certain sense testifies on its own 

the quality of the selection process developed. In any case, to further confirm the 

high information content of the variables identified with the described approach, the 

performance of the network has been compared with the classification capability of 

rates of these models for 

of the electron temperature, which these 

, depend on similar variables but not exactly the same as the ones 

The significantly higher success rate 

ined with the variables identified with our 

approach, supports the validity of the proposed method. This 

theoretical models do not 

. In this respect and in 

bts that the difference in 

between the theoretical models and the NNs is 

input signals, a network has 

inputs as the theoretical model 

failure rate of this network is 

similar to the one of the theoretical 

This indicates that the improvement in performance 
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of the networks can really be attributed to the choice of the input signals and not on the inherent classification power of the netwroks themselves. 

 

A further test of the proposed method capability, to discriminate the most inportant variables, has been performed using a mixture of real and synthetic signals. 

In addition to the three quantities Wmhd, Te, Bt80 the autoassocitive neural network has also been given as input random signals completely uncorrelated with 

the L to H transition. The resulting wiegths of the ANNare clearly much lower for these synthtetic signals and the quantities with a real physical meaning are 

again easily identified.    

 

 
 
 
 
 
 
 
 
 
 

6 Conclusions and further developments  
 
The results presented in the previous section indicate quite clearly that the proposed procedure to select the most relevant variables is quite effective. On the 

basis of these variables the network provides performance, which are significantly superior not only to the theoretical models but also to neural networks 

trained to use the same signals as the theoretical models.  Furthermore, their high success is obtained with only three signals, compare to the four used in the 

most performing theoretical model. Therefore the described method to select the most relevant variables can be considered a validated paradigm, which can be 

probably extended to other physical problems. Particularly innovative is the interpretation of the ANN weights, which has been proved to allow a fast 

identification of the most relevant inputs. The fact that the vast majority of the theoretical models available in the literature do not seem to use the most 

informative quantities for the classification emphasizes also the importance of exploratory methods, like the one described in this paper, as a preliminary or 

complementary step to the process of model development. 

Table VIII 

Success rate of the NN using the variables of model [10] non collisional and the most relevant variables obtained with the proposed 
selection procedure. 

 

 NN using variables from 

theoretical model [10] 

NN using the three 

most relevant variables 

 

Failure rate  

 

18,8% 5,2% 
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An obvious extension of the present work could include the transition back to the L mode from the H one. Preliminary evaluations indicate that the best choice 

of variables is different from the one for the L to H transition. A more involved exploratory data analysis approach could contribute to clarify this point and 

determine also the similarities and differences between these two transient phenomena. 

 

From a methodological point of view, it would be interesting to apply the same procedure to even more nonlinear phenomena. The step involving the PCA and 

the ANN could require some additional refinements.  
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